Innholdsfortegnelse:
- Trinn 1: Uunnværlige materialer
- Trinn 2: Cortar El Cohete
- Trinn 3: Conexiones Eléctricas (reseptor)
- Trinn 4: Conexiones Eléctricas (A Bordo Del Cohete)
- Trinn 5: Last ned Los Programas
- Trinn 6: Ensamblar El Cohete Y La Base Del Lanzamiento
- Trinn 7: Recolección De Datos (Despegue Del Cohete)
- Trinn 8: Análisis De Los Datos Recolectados
Video: Telemetría Ambiental Con Cohete De Agua: 8 trinn
2024 Forfatter: John Day | [email protected]. Sist endret: 2024-01-30 11:24
Hola soy Fabián Picado García y quiero mostrarles cómo elaborar un system of the telemetría ambiental mediante el empleo de un cohete de agua, lo cual implica que nos enfocaremos and la construcción de dos componentes:
a) primero, un cohete y su base de lanzamiento; y
b) luego, un sistema de recolección de datos incorporado al cohete.
De esta forma, concretaremos el principal objetivo de este proyecto, consistente en:
- Medir la concentración de monóxido de carbono (CO) en el aire según la altitud y lugar geográfico mediante un cohete de agua, para establecer su posible impacto tóxico en las aves.
Det kan også være en realitet. Para hacerlo debemos recolectar diferentes datos (por ejemplo las variaciones de presión y en la aceleración) y, finalmente, identifierar la concentración en el aire del citado gas (CO), para así establecer sus efectos.
Una cosa si es segura, al terminar contaremos con un sistema de telemetría con un costo aproximado de sesenta mil colones y de gran interés ambiental, sea para aportar con la preservación de nuestro hogar: el planeta Tierra.
Ahora sí, ¡manos a la obra!
Trinn 1: Uunnværlige materialer
- Herramientas: 1. Cautín y soldadura de estaño. 2. Desatornillador. 3. Alicate. 4. Tijeras. 5. Regla. 6. Llave Allen (para ajustar tornillos). 7. Kutter o cuchilla. 8. Marcador. 9. Computadora (anbefalt portátil). 10. Un inflador para bicicleta de 100 PSI.
Materialer:
1. Un sensor de presión barométrica.* Ver:
2. Un acelerómetro.* Ver:
3. En sensor de gas de monóxido de carbono. Ver:
4. Arduino UNO. Ver:
5. Un Adafruit Featther MO.* Ver:
6. Un emisor y reseptor (2 antenner de kabel de cobre*). Ver:
7. Brødbrett (med følgende dimensjoner: 1,5 x 2 cm og 83 x 54,5 cm). Ver: a) https://www.crcibernetica.com/clear-breadboard-8-3… b)
8. Láminas MDF de 3 mm de grosor para los cortes láser.
9. Tornillos M3X25 y M2X12.
10. Una pantalla LCD. Ver:
11. Gjør kabler USB (tip B y tipo Micro USB).
12. Dos botellas de plástico de 3 litros (usadas para refreshcos).
13. Una botella de plástico de 2,5 litros (usada para refresh).
14. La mitad de una esfera plástica, hueca y de 45 mm de diámetro.
15. Una bolsa plástica para basura.
16. Un rollo de pábilo.
17. Una cinta adhesiva y un rollo de tape eléctrico.
18. Dos litros de agua.
19. Una tarjeta memoria Micro SD og adapter SD.
20. Para la base de lanzamiento del cohete, ocuparemos: 2 tubos de PVC de 1/2 "de 6 metros, 3 uniones tipo T de 1/2" PVC, 3 tapones de 1/2 "PVC for sellar los tubos, unión de PVC de 2”(lanzador), 8 gazas plásticas, 2 gazas metálicas, trozo de botella plástica de 2,5 litros (sobrante de la utilizada), pegamento para PVC and válvula para aro de carro.
*Merk: Estas piezas requieren de soldadura previa en sus pines.
Trinn 2: Cortar El Cohete
En esta etapa construiremos los módulos, el cono y el paracaídas del cohete. Empezaremos por el compartimiento denominado módulo 2 de mediciones porque aquí se almacenará el sistema de telemetría. Para su elaboración tomamos una de las dos botellas de 3 litros (preferiblemente estas botellas deben tener el cilindro con una superficie lisa) y cortamos con la cuchilla donde termina la superficie plana, en la parte inferior; es decir, aproximadamente de la boca de la botella a dicho punto se miden 31 cm (donde se marca en la imagen), cortándose en línea recta y alrededor de todo el perímetro. Lo que nos interesa conservar es el cilindro pues la parte inferior cortada se desecha. Además, para obtener la nivelación de la presión necesaria del sensor, debe abrirse en este moddulo 2 una ventana que ubicaremos en la parte media de la botella, específicamente a una distancia de 13 cm de su boca. La ventana se hace en forma rectangular, dibujándose con marcador el contorno con una dimensionión de 4.5 cm x 7 cm y para realizar los cuatro cortes con la cuchilla les recomiendo introduceir dentro de la botella una base o apoyo sólido y encima de este una hoja blanca para que se pueda differir el rectángulo marcado. Después cubrimos los bordes con tape eléctrico para evitar accidentes.
Al segundo compartimiento le llamamos módulo 1 de propulsión porque es el que impulsa el cohete durante el despegue. Su elaboración es muy simple porque se usa la botella en sí, sin añadirle ni hacerle ningún cambio o modificación. Eso sí, es fundamental cerciorarse que no contenga ningún tipo de agujero o filtración porque aquí se vaciarán los 2 litros de agua antes del despegue; líquido que funcionará como combustible del cohete.
Cono del cohete: se elabora con la tercera botella de 2,5 litros, midiéndose 12 cm desde la boca de la botella hacia su base, punto en el cual se realiza un corte con la cuchilla en línea recta y alrededor de todo el diámetro (como se muestra en la imagen). Posteriormente, tomamos la pieza que contiene la boca de la botella (la restante se puede utilizar en la base de lanzamiento) y tapamos la última con la mitad de la esfera de 45 mm diámetro. La esfera se adhiere a la tapa con tape eléctrico, dándole dos vueltas para que se sujete bien.
Paracaídas: es el componente que amortigua el aterrizaje, para su construcción usamos una bolsa plástica para basura rectangular de 45 cm x 50 cm, la cual en mi caso difiere de las comunes debido a su forma distinta en la parte inferior (ver imagen). Sin embargo, en la eventualidad de no conseguir de este tipo, la solución es adaptar cualquier bolsa de plástico del supermercado y cuyo tamaño sea de aproximadamente 29 cm x 47 cm (incluyendo en la última medida las agarraderas). Primero, acomodan la bolsa introduciendo los pliegues de los lados para que quede con la forma rectangular indicada (conforme viene empacada cuando todavía no ha sido usada y se aprecia en la foto). Después le cortan las asas o las agarraderas, doblan la bolsa a la mitad, unen con cinta adhesiva ambas partes por el borde inferior y la voltean de afuera hacia adentro, de manera tal que la unión realizada quede a lo interno de la bolsa y list para ser usada. (Ver las imágenes)
Luego nos ubicamos en la parte superior de la bolsa (por donde usualmente se introduceen los objetos en esta) y hacemos cinco aberturas, de modo que el perímetro de la bolsa (que por cierto es mayor en ese borde que en el inferior debido a las porciones dobladas no ha sido utilizada) se divide e identifica con el marcador en cinco fracciones, for obtener el espaciado entre cada abertura que realizaremos. La bolsa que empleo mide 90 cm de perímetro (lengde lignende a la que presenta la bolsa adaptada), por lo que marqué 18 cm de espaciado. Además, cada abertura se efectúa con la tijera, de modo que iniciamos el corte en el borde superior hacia el borde inferior de la bolsa, hasta alcanzar 20 cm de longitud; por lo que, una vez cortadas todas las aberturas, se generan 5 franjas en la bolsa. Después, tomamos el pábilo y cortamos un segmento de 70 cm, el cual atamos en el extremo superior de la primera franja de la bolsa, Para hacerlo enrollamos la base inferior de la franja, colocamos el pábilo a una distancia de 7 cm del borde, lo pasamos alrededor del rollo, le hacemos un nudo; luego le damos una vuelta más y hacemos un segundo nudo. Seguimos este procedimiento con las cuatro franjas restantes (según la secuencia fotográfica).
For lengst, kan du se segmentene av pábilo og sobre ellos montamos un sexto segmento de pábilo de 60 cm. Hacemos un nudo con todos los hilos, el cual debe quedar bien firme. El extremo final del pábilo se enrolla dos veces en la boca de la botella del módulo 2 y, luego, para unir el paracaídas con el compartimiento de mediciones hacemos otro nudo (como se aprecia en las imágenes).
Trinn 3: Conexiones Eléctricas (reseptor)
Vi kan nå realiseringen av koneksjonene av elektroniske paneler på LCD -skjermen og av brødbrettene, og de kan også brukes til å behandle medisiner.
En primer for unimos los kabels de pantalla LCD con el Arduino UNO y la placa de prototipado (se video). Al respekto es importante hacer dos observaciones:
a) Aclarar que para las conexiones de la pantalla nos basamos en el texto: "El libro de proyectos de Arduino" (2014, s.116) og para la conexión de cada pin consultamos la hoja de datos del receptor. Ver:
b) En la conexión de la pantalla seguiremos la identificación del Arduino UNO (como se ve en la image adjunta); sin embargo, les recomiendo cambiar el potenciómetro por una resistencia fija con un valor de 10 k y conectamos a GND (divisor de tensión), por lo que no les aconsejo utilizar el elemento propuesto en el citado libro, cuyo ajuste es manual. Lo anterior con el fin de que el brillo de la pantalla se mantenga constante sin requerir ajustes.
En segundo orden, dado que es necesaria la protección y estabilidad de la placa de prototipado con sus conexiones, también vamos a elaborar lo que llamamos una "caja receptora", la cual tiene forma de prisma rectangular de 150 x 80 x 80 mm. El procedimiento para construir la caja descrita es mediante los cortes en láser de las láminas MDF (de 3 mm de grosor). Descargue el siguiente archivo que contiene las formas con los cortes en láser. Debo indicar que el contorno de las caras del prisma está basado en el diseño elaborado av Thomas de Camino. Ver:
Arkiv:
Cuando tenemos listos los cortes de la caja, en una de las caras de 150 x 80 mm debe empotrarse la pantalla LCD, pasándose primero los cable por una ranura rectangular, for luego atornillar (con tornillos M3) la pantalla (ver el video). Con la placa de prototipado y sus circuitos ya terminada, procedemos a colocar el receptor y su antena. La última debemos hacerla manualmente porque si bien en la hoja de datos sí se visualiza como parte del kit de emisor y receptor, lo cierto es que no venía en el producto comprado y por ello, tenemos que construirla. Con este propósito les recomiendo enrollar un alambre de cobre en una pieza cilíndrica de 5 mm de diámetro (yo utilizo una pieza de Lego pero last usar un lápiz, lapicero, etc.). La antena es de 21 espiras y se deja un espacio de 2 cm para soldarla en el receptor y así lograr major manipulación y funcionamiento (ver el detalle en la secuencia fotográfica).
Para la installation de la antena al receptor tomé como modelo la hoja de datos antes referida, pero conectando el pin de "data" en la entrada digital 8 del Arduino UNO porque en la hoja lo ubican en el pin 2, el cual ya está ocupado.
Habiendo colocado el receptor y la antena, introducimos la placa del prototipado que debe quedar al frente de los pines de las salidas de alimentación del Arduino UNO; es decir, en posición paralela a la pared donde se empotró la pantalla dentro de la caja receptora, para lo cual se engranan las restantes paredes de la caja. En la pared posterior se debe dejar la prevista para la conexión de USB en la ranura cuadrada y el rectangular para la salida de la antena. (Se video).
Trinn 4: Conexiones Eléctricas (A Bordo Del Cohete)
En esta etapa vamos and ensamblar el system of the telemetría que se introduce posteriormente en el model 2 del cohete.
Inicialmente empotramos el microcontrolador o el Adafruit fjær M0, el sensor de presión barométrica, el sensor de gas MQ-7 y las correspondientes breadboard, sea para establecer las conexiones entre sí.
Ante lo dicho ocuparemos una estructura a la cual adherir los indicados componentes. Con este propósito diseñe una con forma cilíndrica integrada por dos discos de 115 mm de diámetro y una pieza rectangular de 70 x 50 mm; adjuntándose el archivo para el corte láser. Arkiv:
Tomamos la pieza rectangular y con la ayuda de los tornillos M2 sujetamos cada uno de los componentes en su respectivo espacio. Para ello sujetamos la pieza de MDF de forma tal que las aberturas de los dos rectángulos paralelos se posicionen en el borde superior izquierdo y seguidamente, colocamos el microcontrolador con el USB hacia abajo, agregándole cuatro espaciadores para lo cualo utilz también pueden usarse tuercas o cualquier otro elemento funcional. De esta manera se le da la separación necesaria para facilitar su posterior conexión. Después ponemos el sensor de presión y así, sucesivamente, los restantes componentes, todo según la imagen. Les sugiero pegar las breadboard con tape eléctrico (aunque igual puede emplearse goma, silicona o similares) y colocar la memoria antes del microcontrolador porque, de lo contrario, la tapa inferior no lo permite.
Luego tomamos una de las dos tapas circulares, específicamente la que tiene varios agujeros, y la ponemos en la parte superior, o sea por encima del Adafruit fjær M0. En los agujeros de dicha tapa adherimos el acelerómetro y, posteriormente, las respectivas breadboards con las conexiones del circuito. La breadboard blanca y la primera breadboard verde en la pieza rektangulær. La segunda breadboard verde en la tapa superior junto al acelerómetro.
En breadboard de color blanco conectamos el pin de tierra del microcontrolador a la parte negativea de la tabla y el pin USB lo conectamos a la parte positiva. El pin SDA lo conectamos a una de las filas de la bread board color verde; de igual manera, con el pin SCL.
Para conectar el sensor de presión el pin Vcc lo insertamos en la columna positiva. De igual manera, con el pin GND en la columna negativa. Finalmente, los pines SDA og SCL los conectamos en sus respectivas columnas de la breadboard verde.
En cuanto al sensor de gas, el pin Vcc lo conectamos a la columna positiva y el pin GND en la negativea. Por último, el pin A0 lo conectamos en una de las columnas restantes de la breadboard verde y esta la conectamos con el pin A3 del microcontrolador.
Para el acelerómetro conectamos el pin GND en la columna negativa y el pin Vcc lo conectamos en una de las filas de alimentación de la breadboard verde, luego de aquí al pin 3.3 V de micro controlador. Después, los pines SDA og SCL se unen con la respectiva columna de la breadboard verde.
Por otro lado, en la breadboard que colocamos en la parte superior conectamos el emisor. El pin Vcc y el pin GND se une con la columna positiva y negativea de la indicada barra de alimentación color blanco. Asimismo, el pin de data lo conectamos en la entrada 11 del microcontrolador.
En resumen, las conexiones en una de las dos breadboard verdes puede observarse en la imagen adjunta.
Después, pegamos la batería USB en la pieza rectangular, al frente y en posición vertical. Et øyeblikk som kan brukes for å gjenopprette en del 2 -kohete, og det er mulig å lese en gang. La forma de ingresarla es ubicando la parte donde está la antena de primero. Después debe alinearse con la ventana que abrimos en este compartimiento y así lograr la ventilación necesaria pues al quedar de frente a tal ventana permitirá que el sensor de presión y de gas puedan efectuar las correctas mediciones de altitud and the concentración de CO en el aire.
Trinn 5: Last ned Los Programas
Ahora debemos kan laste ned programmer og los microcontroladores para que comiencencen a funcionar. Con este propósito ingrese en la siguiente página y descargue los archivos denominados: a) emisión de datos, b) recepción de datos yc) las librerías necesarias (I2Cdev.zip, MPU6050.zip, Adafruit_BMP280_Library-master.zip y Adafmaster_zip). Arkiv:
Dentro de cada programa se incorporan, a manera de comentario, las correspondientes explicaciones sobre el funcionamiento general de cada uno de ellos.
For å laste ned programmet og mikrokontrolleren kan realisere følgende:
-Arduino UNO: tilkobling av kabel for USB -mottakere og for USB -tilkoblinger. En el software Arduino IDE desde la pestaña de Herramientas seleccionamos el puerto COM donde el Arduino UNO se conectó (la computadora le indicará dicho puerto). Igual, dentro de la pestaña Herramientas, entramos a Placa y seleccionamos Arduino/Genuino UNO (ver captura de pantalla). Finalmente, damos click en subir y se realiza la descarga.
-Adafruit fjær M0: tilkobling av kabel USB -system for telemetria og USB -tilkobling til datamaskiner. Ingresamos al software Arduino IDE og desde la pestaña de Herramientas seleccionamos el puerto COM, donde el Adafruit fjær M0 se conectó. Nos mantenemos en Herramientas, ahí nos dirigimos a Placa y seleccionamos Adafruit fjær M0 (ver captura de pantalla). For finalizar, damos click en subir.
Después, for comprabar el trabajo realizado desde the software ingresamos for monitor series for a cada uno de los instrumentos construidos and verificamos los data and pantalla.
Trinn 6: Ensamblar El Cohete Y La Base Del Lanzamiento
Una de las partes más fáciles y emocionantes del proyecto es cuando unimos todas las piezas del cohete para luego dar inicio a la medición de los datos requeridos.
Comenzamos con el empaque del paracaídas, para lo cual doblamos la bolsa a la mitad y luego dividimos la franja que se nos forma en tres porciones. La primera se dobla hacia donde están amarrados los pábilos, luego se dobla la segunda parte en la misma dirección. Después, se toman todos los pábilos unidos con las manos y se rodea la última fracción del paracaídas hasta que los pábilos la rodeen por completeo y ya no queda más pábilo por enrollar. El paquete formado se coloca tapando la boca de la botella del módulo 2, al cual antes habíamos atado el paracaídas. Encima se pone el cono presionado la pieza hacia el módulo 2 (como se observa en las imágenes).
Posteriormente, correspondonde ensamblar el módulo 1 pero aquí en forma provisoriske pues, de manera definitiva, se realizará cuando ya se va a efectuar el despegue y hayamos cargado el líquido que funciona como "combustible" (como se explica en el siguiente paso). Para realizar este ensamble la parte inferior de la botella se introdusere en presión, sea que quede sujeta por sí misma; dentro del módulo 2. Finalmente, deberá reforzarse con tape eléctrico pero está acción -como se ha dicho- se realizará como último paso, sea poco antes de iniciar el vuelo.
Con el cohete ya concluido solo nos falta construir la base de lanzamiento. para cuyo procedimiento pueden visitar las siguientes páginas:
-
-
Además, en la image adjunta en el siguiente paso se detallan las partes y medidas que deben tomarse en cuenta para la construcción de una base similar a la que aquí utilizada.
Finalizada la base de lanzamiento, ajustamos el inflador con la válvula.
Trinn 7: Recolección De Datos (Despegue Del Cohete)
Antes de colocar el cohete en la base de lanzamiento llenamos con dos litros de agua, como combustible (según se observa en la imagen), el módulo 1 de propulsión. Luego se introdusere la boca de la botella del módulo 1 en la base de lanzamiento. Beskrivelse av ensambla el mdulo 2 de mediciones, colocándose encima del módulo 1 y asegurándolo con tape eléctrico en la unión de ambos compartimientos (con, al menos, dos vueltas de tape). Finalmente, se registra el paracaídas en la forma ya explicada, este se coloca en la boca de la botella del módulo 2 y se tapar con el respectivo cono. Du kan også se hva som kan gjøres for å gi deg et unikt para que el viento fåcilmente lo pueda desprender cuando inicie la etapa de regreso a tierra.
Preparado el cohete en la base de lanzamiento (cuyas medidas y componentes se observan en la imagen anexa), esperamos la señal enviada por el sistema de telemetría que nos indicará cuando todo esté listé para el despegue; esto con el fin de asegurarnos que el equipo funcione correctamente para poder recolectar los datos deseados.
Conectamos la caja reseptor a la computadora og ingresamos for programvare Arduino IDE, seleccionamos la tarjeta Arduino/Genuino UNO, el puerto COM correspondiente and entramos al monitor series. Tanto en la computadora como en la pantalla LCD de la caja reseptora se nos señalará que el system can be for a la obtención de información and automáticamente comenzará la recolección de datos des tierra.
Con el cohete colocado en la parte superior de la base de lanzamiento (como se visualiza en el video) se pedalea el inflador hasta alcanzar 30 PSI, se acciona el lanzador bajando la pieza de PVC (donde lo indica la flecha) y se produce el despegue (ver video).
Desde el cohete en vuelo, el system simultáneamente comienza a almacenar los datos recolectados en la memoria SD interna como a enviarlos a la computadora. Dichos datos serán processados en la computadora and un libro de Excel tomando como referencia la información guardada en la memoria.
Trinn 8: Análisis De Los Datos Recolectados
Terminado el vuelo del cohete, podemos realizar varias tareas, entre otras:
- Utilizar las variaciones de presión para determinar la altitud alcanzada por el cohete.
- Identificar la concentración de monóxido de carbono en el aire.
Con esta finalidad, concluido el aterrizaje del cohete se introduce the memoria del sistema de telemetría en la computadora. Du kan også lagre en “datalogger.txt” del av kopiene til dataene. Dicha información la pegamos en la hoja de Excel llamada “Análisis de datos”. Después de haber pegado los datos en la pestaña de Inicio buscamos la función de Reemplazar, cambiamos el punto por la coma and damos click en the option Reemplazar todos.
Una vez descargada la hoja, hallaremos dos tablas, una denominada “Mediciones sin procesar”, donde se pega la información recogida y la otra llamada “Mediciones procesadas”, en la cual se registra la concentración de monóxido de carbono (CO) en partes por millón (ppm), la aceleración en cada uno de los ejes (g), la altitud (msnm) y el ángulo con respecto a los ejes “x” y “y”. Además, más abajo, en el mismo documento, se despliegan dos gráficos, uno sobre la concentración de CO en función de la altura y otro de la altura en función del tiempo. En la siguiente página descargue el archivo de Excel (“Análisis de datos”).
Con el procesamiento de tales datos, finalmente, podemos definir el posible impacto tóxico para el ambiente. Esto porque el monóxido de carbono es un gas incoloro, inoloro e insípido, lo cual refleja su dificultad para ser detectado, por lo que -con la ayuda de estas mediciones- podemos identifierar lugares donde su concentración es borgmester.
For mer informasjon om temaet, kan du besøke følgende sider:
- Reglamento sobre la calidad del aire en Costa Rica
www.digeca.go.cr/sites/default/files/reglam…
- Informasjon om komplementarene:
www.estadonacion.or.cr/files/biblioteca_vir…
www.ministeriodesalud.go.cr/index.php/noti…
Es conocido que este compuesto químico afecta tanto a los seres humanos como a la flora y fauna y si bien es cierto también es más común de localizar en la superficie de la tierra, su detección es poco frecuente en otras altitudes, donde podría ser mayor su incidencia en animales que usualmente ocupan estos espacios, como ocurre –por ejemplo- con las aves. Además, la telemetría nos permitirá valorar si las concentraciones de CO son constantes, Independientemente de la altitud; o si, por el contrario, se presentan variaciones conforme a la altura alcanzada y a la trayectoria del cohete.
Anbefalt:
Arduino bilvarslingssystem for omvendt parkering - Trinn for trinn: 4 trinn
Arduino Car Reverse Parking Alert System | Trinn for trinn: I dette prosjektet skal jeg designe en enkel Arduino Car Reverse Parking Sensor Circuit ved hjelp av Arduino UNO og HC-SR04 Ultrasonic Sensor. Dette Arduino -baserte bilreverseringssystemet kan brukes til autonom navigasjon, robotavstand og andre områder
Trinn for trinn PC -bygging: 9 trinn
Steg for trinn PC -bygging: Rekvisita: Maskinvare: HovedkortCPU & CPU -kjøler PSU (strømforsyningsenhet) Lagring (HDD/SSD) RAMGPU (ikke nødvendig) CaseTools: Skrutrekker ESD -armbånd/mathermal pasta m/applikator
Tre høyttalerkretser -- Trinn-for-trinn opplæring: 3 trinn
Tre høyttalerkretser || Trinn-for-trinn opplæring: Høyttalerkretsen styrker lydsignalene som mottas fra miljøet til MIC og sender den til høyttaleren der forsterket lyd produseres. Her vil jeg vise deg tre forskjellige måter å lage denne høyttalerkretsen på:
RC -sporet robot ved hjelp av Arduino - Trinn for trinn: 3 trinn
RC -sporet robot ved bruk av Arduino - Steg for trinn: Hei folkens, jeg er tilbake med et annet kult Robot -chassis fra BangGood. Håper du har gått gjennom våre tidligere prosjekter - Spinel Crux V1 - Gesture Controlled Robot, Spinel Crux L2 - Arduino Pick and Place Robot with Robotic Arms og The Badland Braw
Hvordan lage et nettsted (en trinn-for-trinn-guide): 4 trinn
Hvordan lage et nettsted (en trinn-for-trinn-guide): I denne veiledningen vil jeg vise deg hvordan de fleste webutviklere bygger nettstedene sine og hvordan du kan unngå dyre nettstedbyggere som ofte er for begrenset til et større nettsted. hjelpe deg med å unngå noen feil som jeg gjorde da jeg begynte