Innholdsfortegnelse:
- Trinn 1: Materiales Requeridos
- Trinn 2: Perfiles De Aluminio (maquinado)
- Trinn 3: Ángulos De Aluminio (maquinado)
- Trinn 4: Basismotor (maquinado)
- Trinn 5: Ensamblado
- Trinn 6: Sistema Biela / Manivela
- Trinn 7: Carril De Aplastamiento
- Trinn 8: Sistema De Selección
- Trinn 9: Protección Y Ajustes Finales
- Trinn 10: Sensorer
- Trinn 11: Aktuadorer
- Trinn 12: Programmering
- Trinn 13: Consejos Generales
Video: Aplastadora Y Clasificadora De Botellas Y Latas: 13 trinn
2024 Forfatter: John Day | [email protected]. Sist endret: 2024-01-30 11:23
Sistema utilizado para la compresión y clasificación de latas de aluminio y botellas de plástico (500 ml). Vi introduserer alguna de las dos opciones un sistema de biela/manivela realiza la compresión, el objeto comprimido cae por gravedad a una rampa clasificadora, la cual rota dependiendo si el objeto es una botella o una lata.
Trinn 1: Materiales Requeridos
Estructura:
- * Perfil estructural de aluminio 4545R (2 metros)
- * Perfil estructural de aluminio 4040 (1 metro)
- * Perfil estructural de aluminio 4545 (2 metros)
- 30 Tuercas T M6 para perfil de aluminio 4545
- 30 Tornillos Allen M6 x 12
- Ángulo de aluminio 4545 (1 metro)
*En bruker 3 forskjellige typer perfiler, se bruker 5 metros de 4545.
Mecánica:
- 1 Tabla MDF de 6 mm (90x60 cm)
- 2 Tornillos con tuerca (6 x 80 mm)
- 2 Tornillos con tuerca (6 x 70 mm)
- 4 Balleros de 6 mm (diametro utvendig 22mm, diametro interiør 9mm)
- Varilla de aluminio 20 mm (30 cm)
- Tornillos pernos (3x80 mm)
- Banda (3/4 'x 15')
- Tornillo (8x30mm)
- Placa aluminio (9x9 cm)
- Tornillos (7x30mm)
- Placa de acero (13x10cm)
- Manija
- Solera de aluminio (30cm)
Electrónica:
- Botón
- Sensor induktiv
- Sensor de fin de carrera
- Servo motor
- Motor DC
Otros:
- Placa de acrílico
- PVC -rør (75 mm)
- Cambio de diámetro PVC (75 a 98 mm)
Herramientas
- Fresadora
- Torno
- Sierra sin fin for metal
- Cortadora láser
- Pinzas de corte
- Llave Allen (5/32)
- Segueta
- Impresora 3D
Algunas piezas se imprimieron en 3D, estas pueden ser substituidas por elementos maquinados.
Trinn 2: Perfiles De Aluminio (maquinado)
Du kan også bruke perfiles til å bruke lauren til å bruke metall til primer 4545R og 4 deler på 50 cm i en størrelse, som kan brukes til å lage en struktur.
Después se cortan los perfiles 4040 en dos partes of 50 cm, estas piezas serán el soporte for el motor.
For 455 lengder og deler av 50 cm, kan vi bruke serier til å bygge en struktur. También har en størrelse på 9,5 cm og en størrelse på 12 cm.
Al terminar los cortes, se recomienda quitar la rebaba para que los perfiles embonen más fácilmente y para una major presentación. Se puede utilizar un rebabeador.
Trinn 3: Ángulos De Aluminio (maquinado)
Se tomará la solera no L y se cortará para hacer 14 ángulos de 45 mm de largo. Primero se cortará en la cortadora vertical with una dimensionión de 48 mm. No se corta a la medida ya que la cortadora no puede hacer cortes muy precisos, así que se le deja ese margen de error para poder modificar la pieza después. Una vez cortados, se le tienen que rebajar los 3 milímetros extra. Esto se hace con la fresadora y un endmill de al menos 45 mm de largo.
Finalmente se realizará una perforación, en 10 ángulos, al centro de cada lado con una broca de 6 mm (o un un poco ordfører). Esto también se realizó en la fresadora para una ordfører presis. A los últimos 4 ángulos se le harán dos perforaciones en cada lado.
Trinn 4: Basismotor (maquinado)
For hacer el soporte para el motor, se toma la solera de aluminio y se cortan dos pedazos de 22 cm. Se puede utilizar la misma técnica que los ángulos de aluminio al cortarlo primero en la cortadora vertical with un margen de error para darle la dimensionión en la fresadora. Después se pone el motor arriba de ellas y se marca los lugares en los que se quiera perforar para los tornillos del motor. Estos después son perforados con una broca de 6 mm. Finalmente se hacen dos perforaciones en cada extremo de la solera con una broca de 6 mm. A las piezas finales se les tiene que rebajar las partes con las que haga en contacto el motor, y deberían de quedar como se muestra a continuación.
Trinn 5: Ensamblado
Una vez teniendo todo el material maquinado, ya se puede ensamblar la estructura. Para unir dos perfiles se utiliza un ángulo metálico con un tornillo M6 y una tuerca T en cada orificio. Las tuercas T se introducen en las ranuras del perfil y se ajusta el tornillo con la llave allen. Se bruk av en motor for deg.
Trinn 6: Sistema Biela / Manivela
Para el sistema de Biela og manivela se maquinaron varios componentes. Primero que nada, se fijó el motor a las bases usando los tornillos de 6 x 70 mm. Una vez fijo, se maquinó un perno con la varilla de 20 mm, para que tuviera un diámetro 8 mm. En teoría la biela se podría conectar al motor directamente, no obstante el hacerlo haría que el movimiento fuera muy rápido y difícil de controlar.
Para solucionar este problema se cortó, en MDF y con láser, un sistema de poleas y banda dentada para disminuir la velocidad. La polea pequeña se ajustó directo al perno saliente del motor.
Para la segunda polea se necesitó crear unas bases, las cuales se cortaron con láser en MDF. Un segundo perno se maquinó con la misma varilla de 20 mm con dimensjoner de 10 mm. La segunda polea se ajustó en este perno.
Una vez montado el sistema de poleas se cortó en láser la biela en un acrílico de 6 mm. La manivela fue igualmente cortada pero en MDF.
La manivela fue unida a la biela por un perno con dos baleros.
Trinn 7: Carril De Aplastamiento
Para generar la compresión se creó un émbolo, cortando diferentes círculos de 7 cm de diámetro en MDF. Para tener algo de peso, se le agregó un disco de aluminio del mismo diámetro, manufacturado en el torno. Este disco fue atornillado a los otros círculos de MDF.
Para unir el émbolo a la manivela, se utilizó un ángulo metálico, un tornillo de 7x30 mm con su tuerca. El tornillo fue usado como perno para unir la manivela al ángulo metálico, el cual se atornilló al émbolo.
Para el carril de aplastamiento se utilizó un tubo PVC el cual se cortó con segueta para darle libertad de movimiento a la manivela. Al final del tubo se le agregó un cambio de diámetro de PVC para que la botella aplastada tuviera espacio al comprimirse. Este nyevo PVC er en fullstendig aluminiumsprodukt, en original PVC -forsyning.
Como compuerta se utilizó la placa de acero, a la cual se le atornilló una manija. Esta se introdujo en las rendijas de los pilares. Dos ángulos de aluminio se ajustaron para detener la compuerta.
Trinn 8: Sistema De Selección
Valg av system er en enhet som kan brukes av en servomotor, og den kan avhenge av materialinnføring. Esta compuerta fue cortada en acrílico con láser, al igual que las bases en las cuales esta gira. En base for innsetting av servomotorer, el cual se unía og una pieza impresa i 3D. Esta pieza se atornilló a la compuerta de selección para hacerla girar al mismo tiempo que el servomotor. Para tener estabilidad al momento de girar, se imprimió una segunda pieza, la cual se atornilló al final de la compuerta y se insertó en la segunda base.
Trinn 9: Protección Y Ajustes Finales
Para proteger al usuario de meter la mano dentro del sistema se le agregaron unas paredes de acrílico, cortadas en láser. Estas paredes también fueron usadas para detener algunos componentes electrónicos.
Trinn 10: Sensorer
En esté proyecto se utilizaron 3 principales sensores: de accionamiento (botón), de fin de carrera og un sensor inductivo (detector de metales).
El sensor de fin de carrera se ajustó debajo del carril de aplastamiento, en el punto en el cual se activea al retraerse completeamente el embolo.
En sensor kan gi beskjed til en av metodene som kan brukes på en datamaskin.
El sensor inductivo se ajustó en la base en la cual la compuerta gira.
La conexión de los sensores es bastante directa, solamente el botón y el de fin de carrera, necesitaban conectarse a una resistencia que fuera a tierra para que no estuvieran flotados.
Trinn 11: Aktuadorer
En este proyecto se tienen dos actuadores, un servomotor y un motor DC. Servomotoren kan kontrolleres av arduino, men også av DC -motoren er nødvendig for å kontrollere at den er fullstendig.
Kontrollen av motoren kan brukes til å slå på/av, og 5V kan brukes for å få en ny del av arduinoen, og den automatiske motoren kan brukes til å koble til motorer. Esta fuente proofe 24 V, los cuales son necesarios para el movimiento del motor.
Trinn 12: Programmering
Para la programación se utilizó un systemema of 3 estados. El primer estado es en el cual espera una señal para comenzar con el proceso, el segundo estado es en cual se activa el proceso, y el tercer estado es en el cual hace acciones para finalizar el proceso.
Para el primer estado, espera a que se presione el botón por al menos 3 segundos, si se hace esto el programa se va al segundo estado. En el segundo estado se activa el motor for comenzar el aplaste, espera dos acciones para pasar al estado 3: que el sensor de fin de carrera se active 5 veces o que se detecte una lata en el sensor inductivo. Si se detectó metal, el servomotor se mueve hacia la derecha, mientras que si no se hizo esto, se mueve a la izquierda.
Trinn 13: Consejos Generales
- Tener cuidado al trabajar con el acrílico o si se hace alguna modificación manual a este, este material tiende a quebrarse si se trata de cortar con segueta. En caso de hacer algún corte manual, utilice un taladro para hacer un carril de perforaciones, donde se quiera cortar, y después ya se puede terminar estos cortes con la segueta.
- Para ajustar los tornillos se recomienda usar la mano primero hasta saber cuando ya agarró la tuerca al perfil. Como esto no se puede ver, en muchas ocasiones no se obtiene un buen agarre, lo cual es más fácil detectarlo con la mano. Una vez ajustado un poco, se puede terminar de ajustar con la llave allen.
Anbefalt:
Arduino bilvarslingssystem for omvendt parkering - Trinn for trinn: 4 trinn
Arduino Car Reverse Parking Alert System | Trinn for trinn: I dette prosjektet skal jeg designe en enkel Arduino Car Reverse Parking Sensor Circuit ved hjelp av Arduino UNO og HC-SR04 Ultrasonic Sensor. Dette Arduino -baserte bilreverseringssystemet kan brukes til autonom navigasjon, robotavstand og andre områder
Trinn for trinn PC -bygging: 9 trinn
Steg for trinn PC -bygging: Rekvisita: Maskinvare: HovedkortCPU & CPU -kjøler PSU (strømforsyningsenhet) Lagring (HDD/SSD) RAMGPU (ikke nødvendig) CaseTools: Skrutrekker ESD -armbånd/mathermal pasta m/applikator
Tre høyttalerkretser -- Trinn-for-trinn opplæring: 3 trinn
Tre høyttalerkretser || Trinn-for-trinn opplæring: Høyttalerkretsen styrker lydsignalene som mottas fra miljøet til MIC og sender den til høyttaleren der forsterket lyd produseres. Her vil jeg vise deg tre forskjellige måter å lage denne høyttalerkretsen på:
RC -sporet robot ved hjelp av Arduino - Trinn for trinn: 3 trinn
RC -sporet robot ved bruk av Arduino - Steg for trinn: Hei folkens, jeg er tilbake med et annet kult Robot -chassis fra BangGood. Håper du har gått gjennom våre tidligere prosjekter - Spinel Crux V1 - Gesture Controlled Robot, Spinel Crux L2 - Arduino Pick and Place Robot with Robotic Arms og The Badland Braw
Hvordan lage et nettsted (en trinn-for-trinn-guide): 4 trinn
Hvordan lage et nettsted (en trinn-for-trinn-guide): I denne veiledningen vil jeg vise deg hvordan de fleste webutviklere bygger nettstedene sine og hvordan du kan unngå dyre nettstedbyggere som ofte er for begrenset til et større nettsted. hjelpe deg med å unngå noen feil som jeg gjorde da jeg begynte